Mixing time of an unaligned Gibbs sampler on the square

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixing Rates for the Gibbs Sampler over Restricted Boltzmann Machines

The mixing rate of a Markov chain (Xt)t=0 is the minimum number of steps before the distribution of Xt is close to its stationary distribution with respect to total variation distance. In this work, we give upper and lower bounds for the mixing rate of the Gibbs sampler over Restricted Boltzmann Machines.

متن کامل

Explaining the Gibbs Sampler

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...

متن کامل

The Kernel Gibbs Sampler

We present an algorithm that samples the hypothesis space of kernel classifiers. Given a uniform prior over normalised weight vectors and a likelihood based on a model of label noise leads to a piecewise constant posterior that can be sampled by the kernel Gibbs sampler (KGS). The KGS is a Markov Chain Monte Carlo method that chooses a random direction in parameter space and samples from the re...

متن کامل

The Gibbs Centroid Sampler

The Gibbs Centroid Sampler is a software package designed for locating conserved elements in biopolymer sequences. The Gibbs Centroid Sampler reports a centroid alignment, i.e. an alignment that has the minimum total distance to the set of samples chosen from the a posteriori probability distribution of transcription factor binding-site alignments. In so doing, it garners information from the f...

متن کامل

On Reparametrization and the Gibbs Sampler

Gibbs samplers derived under different parametrizations of the target density can have radically different rates of convergence. In this article, we specify conditions under which reparametrization leaves the convergence rate of a Gibbs chain unchanged. An example illustrates how these results can be exploited in convergence rate analyses.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 2019

ISSN: 0304-4149

DOI: 10.1016/j.spa.2018.10.004